9/27に東京ゲームショウ2009に行ってきました.
上京してから初めての参加だったので勝手が分かってなかったけど,
思ったよりも混雑していなかったような.
あと,撮影した写真はdandelion1124@Picasaにて公開中.
会場暗くて手ぶれしまくったり,ゲーム画面撮影禁止だったりとかで
枚数少なめ.
下の写真は会場で買ったおみやげ.
かわいかったので勢いで買ってしまった(汗)
9/27に東京ゲームショウ2009に行ってきました.
上京してから初めての参加だったので勝手が分かってなかったけど,
思ったよりも混雑していなかったような.
あと,撮影した写真はdandelion1124@Picasaにて公開中.
会場暗くて手ぶれしまくったり,ゲーム画面撮影禁止だったりとかで
枚数少なめ.
下の写真は会場で買ったおみやげ.
かわいかったので勢いで買ってしまった(汗)
かえるさんに教えて頂いたSENSEWARE展に行ってきました.
人工繊維の可能性を探るイベントということで,専門的には明らかに
畑違いですが,公式サイトを見ると楽しそうだったので足を運んでみました.
会場が東京ミッドタウンなせいか知的な感じの人が多かった気がします.
どうみても(自分が)場違いです.スミマセンでした。。。orz
あと,アクセスマップの左上「21_21」というところが
会場なんですけど,最初,本当にそんな形してると思ってなくて
軽くスルーしそうになった人がここにいます(苦笑)
これは庭園に貼ってあったポスター.
公式マスコットなのかよくわかんないけどなんだか憎めないヤツです.
会場入り口のポスター.いろんな人が撮影してた.
受付を済ませると,入場証としてシールがもらえます(※写真にあるのは一般用).
これを服や鞄等の目立つところに貼るんだけど,会場出てから帰宅するまで
はがすのを忘れてた人です。。。orz
まー,誰も見てないから良いよね??多分.
会場入り口の書籍販売コーナーに置いてあったディスプレイ.
というわけで,ここ以降は基本的に撮影禁止だったので写真は無しです.
※後日行かれる方は気を付けましょう.
なので,下記に公式ムービーを掲載します.
作品一覧は公式サイトにおまかせするとして,
個人的なイチオシはダントツで「拭き掃除ロボット」です.
なんかもこもこ動いててとにかくカワイイ(※動画の1:07あたりで出てきます).
あとは,撥水布をうまく使ったWATER LOGOや光を通す
コンクリートなんかは繊維の知識が無くても素直に楽しかったり.
一通り見終わった後,タイミング良くトークイベントをやってたので参加.
#かえるさんも近くを通ったらしく,ニアミスした模様.
トークイベントが終わって感じたのは,一線級でバリバリ活躍している
デザイナーさんは自分のやりたい事が明確かつ貪欲だということ.
分野は違えど自分はまだまだその辺の詰めが甘いなと思ったりとかした.
というわけで,繊維やアートとか良くわかんないし。。。って人もいろいろ
刺激を受けられると思うので,東京近辺の方は足を運んでみると良いかも.
Open Computer Vision Library@SourceForge.netにて
OpenCV 2.0 beta(※2009/9/12現在はWindows版のみ)が
リリースされたということでインストールしてみました.
また,OpenCV 1.1preからの変更点について
ChangeLogの記述を抜粋しました.
>>> New functionality, features: <<< - General: * The brand-new C++ interface for most of OpenCV functionality (cxcore, cv, highgui) has been introduced. Generally it means that you will need to do less coding to achieve the same results; it brings automatic memory management and many other advantages. See the C++ Reference section in opencv/doc/opencv.pdf and opencv/include/opencv/*.hpp. The previous interface is retained and still supported. * The source directory structure has been reogranized; now all the external headers are placed in the single directory on all platforms. * The primary build system is CMake, http://www.cmake.org (2.6.x is the preferable version). + In Windows package the project files for Visual Studio, makefiles for MSVC, Borland C++ or MinGW are note supplied anymore; please, generate them using CMake. + In MacOSX the users can generate project files for Xcode. + In Linux and any other platform the users can generate project files for cross-platform IDEs, such as Eclipse or Code Blocks, or makefiles for building OpenCV from a command line. * OpenCV repository has been converted to Subversion, hosted at SourceForge: http://opencvlibrary.svn.sourceforge.net/svnroot/opencvlibrary where the very latest snapshot is at http://opencvlibrary.svn.sourceforge.net/svnroot/opencvlibrary/trunk, and the more or less stable version can be found at http://opencvlibrary.svn.sourceforge.net/svnroot/opencvlibrary/tags/latest_tested_snapshot - CXCORE, CV, CVAUX: * CXCORE now uses Lapack (CLapack 3.1.1.1 in OpenCV 2.0) in its various linear algebra functions (such as solve, invert, SVD, determinant, eigen etc.) and the corresponding old-style functions (cvSolve, cvInvert etc.) * Lots of new feature and object detectors and descriptors have been added (there is no documentation on them yet), see cv.hpp and cvaux.hpp: + FAST - the fast corner detector, submitted by Edward Rosten + MSER - maximally stable extremal regions, submitted by Liu Liu + LDetector - fast circle-based feature detector by V. Lepetit (a.k.a. YAPE) + Fern-based point classifier and the planar object detector - based on the works by M. Ozuysal and V. Lepetit + One-way descriptor - a powerful PCA-based feature descriptor, (S. Hinterstoisser, O. Kutter, N. Navab, P. Fua, and V. Lepetit, "Real-Time Learning of Accurate Patch Rectification"). Contributed by Victor Eruhimov + Spin Images 3D feature descriptor - based on the A. Johnson PhD thesis; implemented by Anatoly Baksheev + Self-similarity features - contributed by Rainer Leinhart + HOG people and object detector - the reimplementation of Navneet Dalal framework (http://pascal.inrialpes.fr/soft/olt/). Currently, only the detection part is ported, but it is fully compatible with the original training code. See cvaux.hpp and opencv/samples/c/peopledetect.cpp. + Extended variant of the Haar feature-based object detector - implemented by Maria Dimashova. It now supports Haar features and LBPs (local binary patterns); other features can be more or less easily added + Adaptive skin detector and the fuzzy meanshift tracker - contributed by Farhad Dadgostar, see cvaux.hpp and opencv/samples/c/adaptiveskindetector.cpp * The new traincascade application complementing the new-style HAAR+LBP object detector has been added. See opencv/apps/traincascade. * The powerful library for approximate nearest neighbor search FLANN by Marius Muja is now shipped with OpenCV, and the OpenCV-style interface to the library is included into cxcore. See cxcore.hpp and opencv/samples/c/find_obj.cpp * The bundle adjustment engine has been contributed by PhaseSpace; see cvaux.hpp * Added dense optical flow estimation function (based on the paper "Two-Frame Motion Estimation Based on Polynomial Expansion" by G. Farnerback). See cv::calcOpticalFlowFarneback and the C++ documentation * Image warping operations (resize, remap, warpAffine, warpPerspective) now all support bicubic and Lanczos interpolation. * Most of the new linear and non-linear filtering operations (filter2D, sepFilter2D, erode, dilate ...) support arbitrary border modes and can use the valid image pixels outside of the ROI (i.e. the ROIs are not "isolated" anymore), see the C++ documentation. * The data can now be saved to and loaded from GZIP-compressed XML/YML files, e.g.: cvSave("a.xml.gz", my_huge_matrix); - MLL: * Added the Extremely Random Trees that train super-fast, comparing to Boosting or Random Trees (by Maria Dimashova). * The decision tree engine and based on it classes (Decision Tree itself, Boost, Random Trees) have been reworked and now: + they consume much less memory (up to 200% savings) + the training can be run in multiple threads (when OpenCV is built with OpenMP support) + the boosting classification on numerical variables is especially fast because of the specialized low-overhead branch. * mltest has been added. While far from being complete, it contains correctness tests for some of the MLL classes. - HighGUI: * [Linux] The support for stereo cameras (currently Videre only) has been added. There is now uniform interface for capturing video from two-, three- ... n-head cameras. * Images can now be compressed to or decompressed from buffers in the memory, see the C++ HighGUI reference manual - Documentation: * The reference manual has been converted from HTML to LaTeX (by James Bowman and Caroline Pantofaru), so there is now: + opencv.pdf for reading offline + and the online up-to-date documentation (as the result of LaTeX->Sphinx->HTML conversion) available at
http://opencv.willowgarage.com/documentation/index.html– Samples, misc.:
* Better eye detector has been contributed by Shiqi Yu,
see opencv/data/haarcascades/*[lefteye|righteye]*.xml
* sample LBP cascade for the frontal face detection
has been created by Maria Dimashova,
see opencv/data/lbpcascades/lbpcascade_frontalface.xml
* Several high-quality body parts and facial feature detectors
have been contributed by Modesto Castrillon-Santana,
see opencv/data/haarcascades/haarcascade_mcs*.xml>>> Optimization:
* Many of the basic functions and the image processing operations
(like arithmetic operations, geometric image transformations, filtering etc.)
have got SSE2 optimization, so they are several times faster.– The model of IPP support has been changed. Now IPP is supposed to be
detected by CMake at the configuration stage and linked against OpenCV.
(In the beta it is not implemented yet though).* PNG encoder performance improved by factor of 4 by tuning the parameters
>>> Bug fixes: <<< TBD (see http://sourceforge.net/tracker/?group_id=22870&atid=376677 of the list of the closed and still opened bugs). Many thanks to everybody who submitted bug reports and/or provided the patches! >>> Known issues:
* configure+autotools based build is currently broken.
Please, use CMake.
* OpenCV bug tracker at SF still lists about 150 open bugs.
Some of them may be actually fixed already, and most of the remaining bugs
are going to be fixed by OpenCV 2.0 gold.
* IPP is not supported. As the new OpenCV includes a lot of SSE2 code,
it may be not such a serious problem, though.
The support (at least for most important functions that do not have
SSE2 optimization) will be returned in 2.0 gold.
* The documentation has been updated and improved a lot, but it still
needs quite a bit of work:
– some of the new functionality in cvaux is not described yet.
– the bibliography part is broken
– there are quite a few known bugs and typos there
– many of the hyperlinks are not working.
* The existing tests partly cover the new functionality
(via the old backward-compatibility OpenCV 1.x API), but the coverage is
not sufficient of course.
* The new-style Python interface is not included yetMany of the problems will be addressed in 2.0 gold.
If you have found some specific problem, please, put the record to the bug tracker:
http://sourceforge.net/tracker/?group_id=22870
Better if the bug reports will include a small code sample in C++/python +
all the necessary data files needed to reproduce the problem.
これに説明を書こうと思ったけど,変更が多すぎて大変そうなので
今回はインストール周りの注意点だけ書いてみます.
■(デフォルト)インストールディレクトリの変更
従来:C:\Program Files\OpenCV
OpenCV 2.0 beta:C:\Program Files\OpenCV1.2
個人的には
・バージョンがなぜ1.2なのか(OpenCV 1.2にしようとした名残??)
・なぜインストールディレクトリ名を変更したのか
が気になるところ.
■インクルードパスの変更
OpenCV 2.0 betaでは必要なヘッダが一つのディレクトリにまとまっています.
そのため,インクルードパスとしては下記のパス一つだけ指定すればOK.
これは地味にうれしい.
C:\Program Files\OpenCV1.2\include\opencv
ただし,従来のインクルードパスとは異なるので,
Visual Studioの設定変更が必要となります.
■ライブラリパスの変更
従来:C:\Program Files\OpenCV\lib
OpenCV 2.0 beta:C:\Program Files\OpenCV1.2\lib
従来のライブラリパスとは異なるので,
Visual Studioの設定変更が必要となります.
■ライブラリ名の変更
従来:cv.lib
OpenCV 2.0 beta:cv120.lib
ライブラリ名が変わっているので,ソース中で
#pragma comment(lib,”cv.lib”)
としている場合にはライブラリ名の修正が必要になります.
■ライブラリビルド方法変更
従来のOpenCVはVisual Studioのソリューションファイルが
提供されていましたが,OpenCV 2.0 betaからCmakeを用いて
Visual Studioのソリューションファイルを生成し,ライブラリを
ビルドする必要があります.
以前書いたOpenCV/SVN版 OpenCVビルド – Point at infinityの
Cmakeを使ったビルド部分を参考にすることでビルドが可能です.
(※指定パスを変更する必要あり)
その他にもディレクトリ構成がかなり変更されていますが,
それは別の機会にでも。。。
ということで正式版が出るまでしばらく遊んでみようかなーと.